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Autonomous Cyber-Physical Systems

Al and ML have revolutionized the field of Cyber-Physical Systems. But
assuring the safety of these systems is a challenge.
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Accident Reports of Autonomous Vehicles

Tesla Accident — May 2016

Collision Animation

Truck Motion Scenarios
Car Speed Remained Constant

—

Car speed: 7 <4 mph | Time to Collision: 1 Q.4 sec | Distance to Collision: 1 1 28 n

Uber Aident — March 2018

Object
detected
as bicycle

"The Tesla’s automated vehicle control
system was not designed to, and did not,
identify the truck crossing the car’s path or
recognize the impending crash"

- NTSB Report 2017

"The self-driving system software classified the
pedestrian as an unknown object, as a vehicle,
and then as a bicycle with varying expectations
of future travel path. At 1.3 seconds before
impact, the self-driving system determined that

an emergency braking maneuver was needed"
- NTSB Report 2018

1. TESLA Crash report https://www.ntsb.gov/investigations/accidentreports/reports/har1702.pdf

2. Uber Accident report https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1903.pdf



https://www.ntsb.gov/investigations/accidentreports/reports/har1702.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1903.pdf

Research Overview — Dynamic Safety Assurance
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Demonstration Platforms to Validate My Research

Carla Simulation

Raspberry Pi3 g 4v NiMH

Battery LIDAR

o ..,-,~:
Titan 12T Electronic Spe
Motor Control

DeepNNCar Autonomous Driving Testbed




Design-Time Assurance Case (DARPA ARCOS)
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Assurance Case is a structured argument set backed by system evidence to prove that
the system will safely operate in a given environment.



Out-of-Distribution Problem

Shift in Operating Conditions Adversarial Attacks

Machine Learning components are trained under a closed world
assumption that the operational data is drawn IID with the training
dataset, which is not always true. — Out-of-Distribution Problem



Unsupervised Out-of-Distribution Detection

Latent Space
Probabilistic
- Decoder

Probabilistic
Encoder Z
q¢ (2]x) l e (x|2)
Hyperparameters

N is the number
of latent variables
= B controls data
flow

log(o?)

Key Concept - We systematically tune the hyperparameters of B-VAE network to partially
disentangle the latent space and then learn an approximate mapping of the input to the latent

variables to perform OOD detection.

Publications
1. Ramakrishna, S., Rahiminasab, Z., Easwaran, A., & Dubey, A. (2020, September). "Efficient Multi-Class Out-of-Distribution Reasoning for Perception Based Networks:

Work-in-Progress." In 2020 International Conference on Embedded Software (EMSOFT)
2. Ramakrishna, S., Rahiminasab, Z., Karsai, G., Easwaran, A., & Dubey, A. (2021). "Efficient Out-of-Distribution Detection Using Latent Space of B-VAE for Cyber-Physical

Systems." in TCPS 2020



Runtime Verification Detector (Reachability Analysis)

SysID Model

x(t) = f(x(2),u(r))

X, Y, yaw speed

» System properties to be proved is expressed as runtime monitors
» Safe statesidentified using reachability analysis




Out-of-Distribution Detection Demonstration in CARLA Simulation
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Risk Assessment Framework for Autonomous Systems
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Github - https://github.com/scope-lab-vu/Resonate




Risk of AV with Camera Failure
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Runtime Decision Making under uncertainty
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* Problem- Decision logic is learned offline. However, it needs to be “Proactive” and “Adaptive”.

 Reinforcement learning (Q-learning) to learn dynamic decision weights.

Publications
1. Ramakrishna, Shreyas, et al. "Dynamic-weighted simplex strategy for learning enabled cyber physical systems." Journal of
systems architecture 111 (2020): 101760.
2. Ramakrishna, Shreyas, et al. "Augmenting learning components for safety in resource constrained autonomousrobots." 2019
IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC). IEEE, 2019.



Crossing Track Boundaries — DeepNNCar Demo

dynamic-weightell simplex

Key Results:
* Dynamic-weighted simplex had 60% fewer out-of-track occurrences at an average speeds of 0.4

m/s as compared to either LEC or OpenCV controller driven system




Automated Testing Framework

Name: World Description File
Scenario Description:
town: 5 #Avaliable towns 5,6,7. A town can have N re

* Anomaly Detector regions: 5 #If regions are not available, the scenar
W\ e 0OOD Detector weather:
Autonomous e Risk Estimator cloudiness: [0,100] # min:®, max:108
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sun_altitude_angle: [-90,90] # min:-90, max:9%0
wind_intensity: false # min:®, max:100
sun_azimuth_angle: false # min:0, max:100
N ) > wetness: false # min:0, max:100
E Scormg FunCtlon fog_distance: false # min:0, max:100
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Data Analysis lSRisk =w; - RS +wy - IS #1: false
#2: fTalse
#3: true
#4: true
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weather_delta: 2 #The weather parameters will vary b
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cloudiness: @
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precipitation_deposits: 0
sun_altitude_angle: 45
wind_intensity: 0
sun_azimuth_angle: 08
wetness: 0
fog_distance: 0
fog_density: 0
region: 1 #scenario will start from regionil
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Domain-Specific Modeling language
for test case generation

Github - https://github.com/scope-lab-vu/Risk-Aware-Scene-Generation-CPS
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